3.1 Early vs. Delayed Enteral Nutrition

Question: Does early enteral nutrition compared to delayed nutrient intake result in better outcomes in the critically ill adult patient?

Summary of evidence: There were 19 randomized controlled trials (all level 2 studies) comparing early enteral nutrition (EN) vs. delayed nutrient intake. In all the trials except one, EN in the intervention group was started within 24-48 hours of admission/resuscitation. There were 12 studies comparing early vs. delayed EN (i.e., delayed EN, parenteral nutrition [PN] or oral diet) and 7 studies where early EN was compared to no EN/IV fluids. Of all the included studies, the median control group mortality was 18%. There were 9 studies with low control group mortality (<18%) and 10 studies with high control group mortality (\geq 18%).

Mortality: When the data from the 18 studies that looked at the effect of early EN on mortality were aggregated, when compared to delayed nutrient intake, early EN was associated with a significant reduction in mortality (RR 0.70, 95% CI 0.50, 0.97, p=0.03, heterogeneity $l^2=0\%$; figure 1). In a subgroup analysis, early EN vs. no EN/IV fluids was associated with a significant reduction in mortality (RR 0.58, 95% CI 0.35, 0.95, p=0.03, heterogeneity $l^2=0\%$; figure 1a), whereas early vs. delayed EN had no effect on mortality (RR 0.81, 95% CI 0.52, 1.28, p=0.37, heterogeneity $l^2=0\%$; figure 1a). The difference between the two subgroups was not significant (p=0.32; figure 1a). In another subgroup analysis based on median control group mortality, significant mortality benefit of early EN was found in studies that had high control group mortality (RR 0.64, 95% CI 0.42, 0.98, p=0.04, heterogeneity $l^2=0\%$; figure 1b) but not in studies with low control group mortality (RR 0.77, 95% CI 0.45, 1.32, p=0.34, heterogeneity $l^2=0\%$; figure 1b). However, the test for subgroup differences was not significant (p=0.59; figure 1b)

Infections: Twelve studies reported on infections and of these only 11 studies reported on the number of patients with infections and when these were aggregated, early EN when compared to delayed nutrient intake was associated with a significant reduction in infectious complications (RR 0.83, 95% CI 0.71, 0.97, p=0.02, heterogeneity I²=14%; figure 2). In a subgroup analysis, early EN vs. no EN/IV fluids was associated with a significant reduction in infections (RR 0.78, 95% CI 0.60, 1.00, p= 0.05, heterogeneity I²=6%; figure 2a), whereas early vs. delayed EN had no effect on infections (RR 0.86, 95% CI 0.69, 1.08, p=0.20, heterogeneity I²=12%; figure 2a). The difference between the two subgroups was not significant (p=0.56; figure 2a). In another subgroup analysis based on median control group mortality, significant mortality benefit of early EN was found in studies that had low control group mortality (RR 0.75, 95% CI 0.58, 0.95, p=0.02, heterogeneity I²=21%; figure 2b) but not in studies with high control group mortality (RR 0.73, 1.21, p=0.64, heterogeneity I²=0%; figure 2b). However, the test for subgroup differences was not significant (p=0.19; figure 2b)

LOS and Ventilator days: Seventeen studies looked at LOS (7 reported on ICU LOS only, 4 reported on hospital LOS only and 6 reported on both ICU and hospital LOS). When the results were meta-analyzed, early EN had no effect on ICU stay (WMD -1.22, 95% CI -3.52, 1.07, p=0.30,

Critical Care Nutrition: Systematic Reviews May 2021

heterogeneity $l^2=44\%$; figure 3) or hospital length of stay (WMD -1.34, 95% CI -7.69, 5.02 p = 0.68, heterogeneity $l^2=51\%$; figure 4). A total of 9 studies reported on ventilator days and based on the aggregated data from 8 of these studies was aggregated, there were no significant differences between the early vs. delayed fed groups (WMD -0.75, 95% CI -3.15, 1.65, p =0.54, heterogeneity $l^2=47\%$; figure 5). These results did not change with subgroup analysis of early EN vs IV fluids/No EN, early EN vs delayed EN, low control group mortality or high control group mortality.

Other: All sixteen studies that reported nutritional endpoints showed a significant improvement in the groups receiving early EN (calorie intake, protein intake, % goal achieved, faster nitrogen balance achieved, albumin levels). There were no differences in other complications between the groups.

Conclusions:

- 1) Early enteral nutrition compared to delayed nutrient intake is associated with a significant reduction in mortality in critically ill patients.
- 2) Early enteral nutrition compared to delayed nutrient intake is associated with a significant reduction in infectious complications.
- 3) Early enteral nutrition compared to delayed nutrient intake has no effect on ICU or hospital length of stay.
- 4) Early enteral nutrition compared to delayed nutrient intake is associated with improved nutritional intake.

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis. Level 2 study: If any one of the above characteristics are unfulfilled

Study	Population	Methods (score)	Intervention	Mortalit Early EN	y # (%)† Delayed	Infectior Early EN	ns # (%)‡ Delayed	Shock/ Vassopressors Early EN vs Delayed
1) Moore 1986	Trauma with abdominal trauma index > 15 Shock (n=20) N=43	C.Random: not sure ITT: no Blinding: no (6)	Vivonex post op (< 24 hrs) via jejunostomy vs. D5W then progressed to parenteral nutrition if not on regular diet (both groups got PN)	1/32 (3)	2/31 (6)	3/32 (9)	9/31 (29)	Shock (<90 mm Hg) 11 (42%) vs 9 (36%)
2) Chiarelli 1990	Burns N=20	C.Random: not sure ITT: yes Blinding: no (6)	Immediate EN (4.4 ± 0.49) hrs) vs > 48 hrs (57.7 ± 2.6 hrs) (gastric feeding)	0/10 (0)	0/10 (0)	3/10 (30) positive blood cultures	7/10 (70) positive blood cultures	Not reported
3) Eyer 1993	Trauma, ICU N=52	C.Random: not sure ITT: no Blinding: no (8)	EN < 24 hrs (31 ± 13 hrs from ICU admission) vs > 72 hrs (82 ± 11 hrs from ICU admission) (small bowel feeding)	2/19 (11)	2/19 (11)	29/19 per group	14/19 per group	Not reported
4) Chuntrasakul 1996	Trauma patients with injury severity score 20-40 N=38	C.Random: not sure ITT: yes Blinding: no (6)	Traumacal via gastric route (early i.e. immediately after resuscitation) + PN if needed vs IV fluids and oral diet when bowel function detected	1/21 (5)	3/17 (18)	NR	NR	Not reported
5) Singh 1998	Non traumatic intestinal perforation and peritonitis BMI 21-22 N=37	C.Random: no ITT: yes Blinding: no (8)	Low residue blenderized diet via jejunostomy 12-24 hrs post laporotomy vs. IV fluids/lytes, oral diet started once bowel activity resumed	4/21 (19)	4/22 (18)	7/21 (33)	12/22 (55)	Not reported
6) Kompan 1999	Multiple trauma in shock N=28	C.Random: yes ITT: no Blinding: no (9)	EN ~4.4 hrs after admission to ICU, 9.2 hrs after trauma vs ~ 36.5 hrs from ICU admission, 41.4 hrs after trauma. Gastric feeding, both groups got PN	ICU 0/14 (0) Hospital 0/14 (0)	ICU 0/14 (0) Hospital 1/14 (7)	NR	NR	Shock was assessed using the Allgower shock index: hearth rate/systolic pressure
7) Minard 2000	Closed head injuries N=27	C.Random: not sure ITT: no Blinding: no (7)	EN < 60 hrs (33 ± 15 hrs) (small bowel) vs late ($84 \pm$ 41 hrs) (gastric)	1/12 (8)	4/15(27)	6/12 (50)	7/15 (47)	Not reported

Table 1. Randomized studies evaluating early EN vs. delayed nutrient intake in critically ill patients

Critical Care Nutrition: Systematic Reviews May 2021

8) Pupelis 2000	Severe pancreatitis patients undergoing emergency surgery N=29	C.Random: not sure ITT: yes Blinding: no (6)	EN < 24 hrs post-op via jejunum + IV fluids vs. IV fluids until reintroduction of normal diet	1/11 (9)	5/18 (28)	NR	NR	Not reported
9) Pupelis 2001	Post laparotomy for severe pancreatitis and peritonitis N=60	C.Random: not sure ITT: yes Blinding: no (6)	EN < 12 hrs post-op via jejunum + IV fluids vs. IV fluids until reintroduction of normal diet	1/30 (3)	7/30 (23)	1/30 (3)	Peritonitis 8/30 (27) Septic cations 8/30 (27)	Not reported
10) Kompan 2004	Multiple trauma patients, ICU N=52	C.Random: not sure ITT: yes Blinding: no (6)	EN ~10.6 hrs after injury vs ~ 36.5 hrs from ICU admission. Gastric feeding, both groups had PN	0/27 (0)	1/25 (4)	9/27 (33)	16/25 (64)	Patients who recovered from shock within 6 h after admission to ICU were included in the study; All patients were sedated, while vasoactive therapy was introduced later in patients suffering from multiple organ failure
11) Malhotra 2004	Post-op for peritonitis N=200	C.Random: not sure ITT: yes Blinding: no (6)	EN post-op < 48 hrs via nasogastric+ IV fluids (oral feeds if ready by day 8 post-op) vs. IV fluids for 7 days (oral feeds if ready on day 5 post-op)	12/100 (12)	16/100 (16)	54/100 (54)	67/100 (67)	Not reported
12) Peck 2004	Burns N=27	C.Random: not sure ITT: no Blinding: no (6)	Crucial < 24 hrs from burn injury vs. 7 days. Both groups received oral diet as tolerated (4-9% calories) (gastric feeding)	4/14 (28)	5/13 (38)	12/14 (86)	11/13 (85)	Patients in burn shock were initially resuscitated with lactated Ringer's solution
13) Dvorak 2004	Acute spinal cord injury patients BMI=26-29 N=17	C.Random: yes ITT: yes Blinding: no (10)	Continuous enteral feeding via nasogastric route within 72 hours of injury vs. after 120 hrs of injury. Both groups followed feeding protocol (head of bed, starting rate 25 ml/hr, gastric residual volumes checked, etc).	0/7 (0)	0/10 (0)	2.4 ± 1.5 per group	1.7 ± 1.1 per group	Not reported

Critical Care Nutrition: Systematic Reviews May 2021

14) Nguyen 2008	Mixed ICU BMI=27-28 N=28	C.Random: no ITT: yes Blinding: no (9)	EN < 24 hrs of ICU admission vs. after day 4. No motility agents given	ICU 4/14 (29) Hospital 6/14 (43)	ICU 4/14 (29) Hospital 6/14 (43)	Pneumonia 3/14 (21)	Pneumonia 6/14 (43)	Not reported
15) Moses 2009	Organophosphate poisoned, mechanically ventilated ICU patients N=59	C.Random: No ITT: No Blinding: No (5)	Hypocaloric EN within 48hr of intubation + IV glucose (Day 1 20 ml/hr (0.5 kcal/ml), day 2 20 ml/hr (1 kcal/ml) day 3 40 ml/hr (1 kcal/ml) feeds), max 1000 kcals/day vs.EN post tracheostomy placement + IV glucose	3/29 (10)	3/30 (10)	14/29 (48)	15/30 (50)	Not reported
16) Chourdakis 2012	Traumatic brain injury requiring mechanical ventilation in ICU N=59	C.Random: No ITT: Yes Blinding: No (6)	Early enteral feed within 24- 48 hrs post ICU admission (hrs in ICU prior to first feeding: 31.2 ± 11.2 hrs) vs.delayed enteral feed within 48-120hrs post ICU admission (hrs in ICU prior to first feeding: 76.5 ± 22.6 hrs)	3/34 (9)	2/25 (8)	VAP 13/34 (38)	VAP 12/25 (43)	Not reported
17) Ostadrahimi 2016	Burn pts with TBSA 20-90% N=41	C.Random: No ITT: No Blinding: No (6)	Early enteral feeding within the first hour of admission, reaching goal EN by day 3 vs hospital routine diet ad libitum (liquid food for 2 days after injury followed by chow diet)	2-Day Hospital 3/21 (14.3%)	2-Day Hospital 4/20 (20%)	NR	NR	Not reported
18) Sun 2019	Septic patients admitted to ICU N=53	C.Random: Yes ITT: No Blinding: No (7)	Early enteral feeding within 24-48 hrs post admission vs. delayed feeding starting 4 days post admission. Both received peptide based then whole protein formula starting at 15-20 ml/hr, increasing by 15-20 ml q 6-8 hrs. Parenteral nutrition was used to supplement enteral nutrition if intake was <60% after day 7	28 day 4/26 (15.4%)	28 day (6/27 (22.2%)	NR	NR	All patients received specialized treatments for sepsis as needed, including vasopressors

Critical Care Nutrition: Systematic Reviews May 2021

19) Patel 2020	Septic shock (required vasopressor) Septic shock was defined as persistent hypotension (mean arterial pressure < 70 mmHg) despite 30 mL/kg IV fluid bolus and requiring vasopressor in a patient with identified or presumed infection. N=31	C.Random: Yes ITT: Yes Blinding: No (10)	Early trophic EN (≤600 kcal/d) while on vasopressor vs 'no EN' until after 3 hour of discontinuation of vasopressor.	Hospital 2/15 (13)	Hospital 6/16 (38)	VAP 0 Candida isolation 1/15 (7)	VAP 1/16 (6) Candida isolation 6/16 (38)	Shock 4 (27) 5 (31) Norepinephrine dose, median µg/kg/min (IQR) 0.08 vs. 0.08 (0.05–0.25) (0.05–0.32) Combination vasopressors, n (%) 4 (27) vs. 5 (31)
----------------	--	---	---	-----------------------	-----------------------	--	--	--

Study	LOS	6 days	Ventila	tor days	Other
Study	Early EN	Delayed	Early EN	Delayed	Early EN Delayed
1) Moore 1986	NR	NR	NR	NR	Complications 14/32 (44) 15/31 (48) Feed Intolerance 12/32 (38) NR
2) Chiarelli 1990	Hospital 69.2 ± 10.4 (10)	Hospital 89 ± 18.9 (10)	NR	NR	Days to positive Nitrogen Balance 8.8 ± 4.1 24.1 ± 6.9 $p<0.05$ Intestinal Complications $2/10$ (20) $2/10$ (20)
3) Eyer 1993	ICU 11.8 ± 7.9 (19)	ICU 9.9 ± 6.7 (19)	10.2 ± 8.1 (19)	8.1 ± 6.8 (19)	Calorie Intake (kcal/kg/day) 30 ± 6 19 ± 5 $p < 0.001$ Protein Intake (gm/kg/day) 1.3 ± 0.3 0.9 ± 0.2 $p < 0.001$ Organ System Failure $2/19 (10.5)$ $2/19 (10.5)$
4) Chuntrasakul 1996	ICU 8.1 ± 6.3 (21)	ICU 8.35 ± 4.8 (17)	5.29 ± 6.3 (21)	6.12 ± 5.3 (17)	Calories Received in Week 1 1885.2 \pm 38.3 633.4 \pm 83.7 Calories Received in Week 2 1850.3 \pm 248.4 717.31 \pm 142
5) Singh 1998	Hospital 14 ± 6.9 (19)	Hospital 13 ± 7.0 (18)	NR	NR	$\begin{array}{c} \mbox{Complications} \\ 11/21 \ (52) & 13/22 \ (59) \\ \mbox{Calorie Intake by Day 7} \\ 2610 \pm 337 & 516 \pm 156 \\ \mbox{Nitrogen Balance by Day 7} \\ 5.1 \pm 0.7 & 10.8 \pm 3.1 \\ \end{array}$
6) Kompan 1999	ICU 11 (10.5-24.7)	ICU 14 (10.5-24.7)	13 (6.7-18)	11.9 (6-7.7)	EN Received on Day 4 (mls) 1340 ± 473 703 ± 701 p=0.009
7) Minard 2000	ICU 18.5 ± 8.8 (12) Hospital 30 ± 14.7 (12)	ICU 11.3 ± 6.1 (15) Hospital 21.3 ± 13.7 (15)	15.1 ± 7.5 (12)	10.4 ± 6.1 (15)	Calorie Intake 1509 ± 45 1174 ± 425 $p < 0.02$ Feed Infusion Complications $22/12$ $28/15$

Table 1. Randomized studies evaluating early EN vs. delayed nutrient intake in critically ill patients (continued)

8) Pupelis 2000	ICU	ICU			
, .	7 ± 41 (11)	6 ± 34 (18)	NR	NR	NR
	Hospital	Hospital			
	45 ± 96 (11)	29 ± 103 (18)			
9) Pupelis	ICU	ICU			Total kcals After Surgery
2001	13.9 ± 14.6 (30)	16 ± 20.5 (30)	NR	NR	1295 ± 327 473 ± 156
	Hospital	Hospital			
	35.3 ± 22.9 (30)	35.8 ± 32.5 (30)			
10) Kompan 2004	ICU	ICU			EN Received on Day 4 (mls)
	15.9 ± 9.7 (27)	20.6 ± 18.5 (25)	12.9 ± 8.1 (27)	15.6 ± 16.1 (25)	$1175 \pm 485 \qquad \qquad 803 \pm 545 \qquad \qquad$
					p=0.012
11) Malhotra 2004	ICU	ICU			Patients Receiving > 1500 cals
	1.59 (mean)	2.10 (mean)	NR	NR	Post-op Day 4
	Hospital	Hospital			65% 0%
	10.59 (mean)	10.70 (mean)			p<0.001
					Patients Receiving > 2500 cals
					Post-op Day 8 84% 0%
					p<0.001
12) Peck 2004	ICU	ICU			Mean Calorie Intake
12)1 COR 2004	40 ± 32 (14)	37 ± 33 (13)	32 ± 27 (14)	23 ± 26 (13)	2234 2207
	Hospital	Hospital		20 ± 20 (10)	Mean Calorie Intake Change/Week
	$60 \pm 44 (14)$	60 ± 38 (13)			156 166
13) Dvorak 2004	Hospital	Hospital			Number of Feeding Complications
-,	53 ± 34.4 (7)	37.9 ± 14.6 (10)	31.8 ± 35	20.9 ± 14.4	39 59
					Hours to Reach Energy Goals
					113 166
					Energy Intake
					$1938 \pm 1100 \qquad 1588 \pm 983$
					Protein Intake
					86.8 ± 59 67.6 ± 54
14) Nguyen 2008	ICU	ICU			Mean Calorie Intake from Day 0-4
	11.3 ± 3.0 (14)	15.9 ± 7.1 (14)	9.2 ± 3.4 (14)	13.7 ± 7.1 (14)	$2894 \pm 198 \qquad \qquad 0$
15) Moses 2009	ICU	ICU			Total Calories
-	10.6 (6-13) 8 (5-17.5)	12 (5.5-14)	10 (4-12)	604 (500-713) 447 (424-484)	
	Hospital	Hospital			p<0.0001
	15 (9.5-20)	12 (7.5-15)			

Critical Care Nutrition: Systematic Reviews May 2021

16) Chourdakis 2012	ICU	ICU			Hyperglycemia
	24.8 ± 7.6 (34)	28.5 ± 8.9 (25)	NR	NR	5/34 (15) 4/25 (16)
					Feed Intolerance
					3/34 (9) 3/25 (12)
					Diarrhea
					4/34 (12) 3/25 (12)
					1/34 (3) 1/25 (4)
					Day 10 of Intake (kcal/day)
					1432.0 ± 156.3 813.0 ± 235.1
17) Ostadrahimi	Hospital	Hospital			
2016	17.64 <u>+</u> 8.2 (15)	23.07 <u>+</u> 11.89 (15)	NR	NR	NR
18) Sun 2019	ICU	ICU			Albumin levels on Day 7
	8.31 ± 4.26 (26)	11.22 ± 5.43 (27)	4.5 ± 2.58 (26)	7.15 ± 3.95 (27)	33.51 ± 3.75 31.47 ±3.82
					Number on CRRT
					4/26 (15.4%) 3/27 (11.1%)
19) Patel 2020	30-d ICU-free days	30-d ICU-free days	30-d VFD	30-d VFD	Total EN kcal intake while on vasopressor
	25 (14-27)	12 (0-22)	27 (24-28)	14 (0-26)	229 ±138.6 vs 80.9±237.9; p=<0.001
				, , , , , , , , , , , , , , , , , , ,	Daily EN kcal intake
					327.6±205.5 vs 471.7±461.4; p=0.781
					Daily EN Protein intake
					16.0±9.9 vs 27.5±30.1; p=0.736
					Total kcal from Dextrose
					564.5±529.4 vs 957.6±971.8; p=0.118
					Total kcal from Propofol
					398.6±570.5 vs 696.1±696.1, p=0.295
					Need for new RRT 2/15 (13) vs 4/16 (25); p=0.654
					Vomiting (first 72h)
					2/15 (13) vs 8/16 (50); p=0.054
					Vomiting (first 7d)
					3/15 (20) vs 9/16 (56); p=0.038
					lleus any day (first 7d)
					0 vs 0
					Intestinal ischemia
					0 vs 0
					Small bowel obstruction
					0 vs 0
					GRV >500ml
					0 vs 0

C.Random: Concealed randomization

ITT: Intent to treat NR: Not reported

‡ Refers to the # of patients with infections unless specified
 † Presumed hospital mortality unless otherwise specified

 \pm (): Mean \pm SD =Standard deviation (number); (-): mean (range) * SEM converted to SD

	Early		Delayed,			Risk Ratio		Risk Ratio
Study or Subgroup		Total	Events	Total	Weight	M-H, Random, 95% CI	Year	r M-H, Random, 95% CI
L.1.1 EN vs IV Fluids	5/No EN							
Moore 1986	1	-	2	31	2.0%	0.48 [0.05, 5.07]	1986	ì <u> </u>
Chuntrasakul 1996	1	21	3	17	2.3×	0.27 [0.03, 2.37]	1996	ì — — — — — — — — — — — — — — — — — — —
ilngh 1998	4	21	4	22	7.0%	1.05 [0.30, 3.66]	1998	
Pupelis 2000	1	11	5	18	2.7%	0.33 [0.04, 2.45]	2000)
Pupelts 2001	1	30	7	30	2.7%	0.14 [0.02, 1.09]	2001	· · · · · · · · · · · · · · · · · · ·
Malhotra 2004	12	100	16	100	22.7%	0.75 [0.37, 1.50]	2004	• -•+
Patel 2020	2		6	16	5.3%	0.36 [0.08, 1.50]	2020	
Subtotal (95% CI)		230		234	44.7%	0.58 [0.35, 0.95]		◆
Fotal events	22		43					
Heterogeneity: Tau ² ·	= 0.00; Cl	hľ² = 4.	58, df = 6	i (P = 0.6	60); i ² = (0%		
lest for overall effect	: Z = 2.10	6 (P = C).03)					
1.1.2 EN vs Delayed	EN							
Chiarelli 1990	0	10	0	10		Not estimable	1990	
yer 1993	2		2	19	3.2%	1.00 [0.16, 6.38]		
Compan 1999	0	14	1	14	1.1%	0.33 [0.01, 7.55]		
Minard 2000	1	12	4	15	2.6%	0.31 [0.04, 2.44]		
Compan 2004	0	27	1	25	1.1%	0.31 [0.01, 7.26]		
Dvorak 2004	0	7	0	10	-	Not estimable		
Peck 2004	4	14	5	13	9.5%	0.74 [0.25, 2.18]		
Nguyen 2008	6	14	6	14	15.0%	1.00 [0.43, 2.35]		
Moses 2009	3	29	3	30	4.6%	1.03 [0.23, 4.71]		
Chourdakts 2012	3		2	25	3.7%	1.10 [0.20, 6.12]		
Ostradrahimi 2016	3	-	4	20	5.9X	0.71 [0.16, 2.60]		
Sun 2019	4	26	6	27	8.4%	0.69 [0.22, 2.18]		
Subtotal (95% CI)		227	•	222	55.3%	0.79 [0.51, 1.24]		▲
Fotal events	26		34					-
Heterogeneity: Tau ²	-		-	$(\mathbf{P}=0)$	99): I ² = () %		
lest for overall effect						**-		
Fotal (95% CI)		457		456	100.0%	0.69 [0.49, 0.96]		•
Fotal events	48		77			-		-
Heterogeneity: Tau ²				6(P = 0	.96): i ² =	0%		
lest for overall effect				- · · ·	··· •/1 ·			0.01 0.1 1 10 10
est for subgroup dif				1/2 = 4	า 361 ศั -	. 0%		Favours Early EN Favours Delayed/None

Figure 1a. Early EN vs delayed nutrient intake: Mortality (Subgroup of Early vs No EN or Delayed EN)

	Early		Delayed		anty (Ou	Risk Ratio	conti	Risk Ratio
Study or Subgroup			Events	Total	Weight	M-H, Random, 95% CI	Year	M–H, Random, 95% CI
2.1.1 Low Control Gr	oup Mor	tality						
Moore 1986	1	32	2	31	2.0%	0.48 [0.05, 5.07]	1986	
Chiarelli 1990	0	10	0	10		Not estimable	1990	
Eyer 1993	2	19	2	19	3.2%	1.00 [0.16, 6.38]	1993	
Kompan 1999	0	14	1	14	1.1%	0.33 [0.01, 7.55]	1999	
Dvorak 2004	0	7	0	10		Not estimable	2004	
Kompan 2004	0	27	1	25	1.1%	0.31 [0.01, 7.26]	2004	
Malhotra 2004	12	100	16	100	22.7%	0.75 [0.37, 1.50]	2004	
Moses 2009	3	29	3	30	4.6%	1.03 [0.23, 4.71]	2009	
Chourdakis 2012	3	34	2	25	3.7%	1.10 [0.20, 6.12]	2012	
Subtotal (95% CI)		272		264	38.6%	0.77 [0.45, 1.32]		
Total events	21		27					
Heterogeneity: Tau ² = Test for overall effect:				i (P = 0.)	96); r = ()%		
2.1.2 High Control G	roup Mo	rtality						
Chuntrasakul 1996	1	21	3	17	2.3%	0.27 [0.03, 2.37]	1996	
Singh 1998	4	21	4	22	7.0%	1.05 [0.30, 3.66]	1998	
Minard 2000	1	12	4	15	2.6%	0.31 [0.04, 2.44]	2000	
Pupelis 2000	1	11	5	16	2.7%	0.33 [0.04, 2.45]	2000	
Pupelis 2001	1	30	7	30	2.7%	0.14 [0.02, 1.09]	2001	
Peck 2004	4	14	5	13	9.5%	0.74 [0.25, 2.18]	2004	
Nguyen 2008	6	14	6	14	15.0%	1.00 [0.43, 2.35]	2008	
Ostradrahimi 2016	3	21	4	20	5.9X	0.71 [0.18, 2.80]	2016	
Sun 2019	4	26	6	27	6.4%	0.69 [0.22, 2.18]	2019	
Patel 2020	2	15	6	16	5.3%	0.36 [0.08, 1.50]	2020	
Subtotal (95% CI)		185		192	61.4%	0.64 [0.42, 0.98]		◆
Total events	27		50					
Heterogeneity: Tau ² = Test for overall effect:) (P = 0.1	70);)%		
Total (95% CI)		457		456	100.0%	0.69 [0.49, 0.96]		◆
Total events	48		77					
Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diffi	Z = 2.21	l (P = 0	.03)	-				0.01 0.1 1 10 10 Favours Early EN Favours Delayed/None

Figure 1b. Early EN vs delayed nutrient intake: Mortality (Subgroup of high vs low control group mortality)

	Early		Delayed/	None		Risk Ratio	•	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M–H, Random, 95% CI
1.2.1 EN vs IV Fluids	s/No EN							
Moore 1986	3	32	9	31	1.6%	0.32 [0.10, 1.08]	1986	
Singh 1998	7	21	12	22	4.5X	0.61 [0.30, 1.25]	1998	
Pupelis 2001	10	30	8	30	3.6X	1.25 [0.57, 2.73]	2001	
Malhotra 2004	54	100	67	100	37.6X	0.81 [0.64, 1.01]	2004	-
Patel 2020	0	15	1	16	0.2%		2020	
Subtotal (95% CI)		198		199	47.6%	0.78 [0.60, 1.00]		◆
Total events	74		97					
Heterogeneity: Tau ² •				$\langle \mathbf{P}=0. \rangle$	37); l² = (6%		
Test for overall effect	: Z = 1.92	P = 0	.05)					
1.2.2 EN vs Delayed	EN							
Minard 2000	6	12	7	15	3.7%	1.07 [0.49, 2.34]	2000	
Kompan 2004	9	27	16	25	6.1%	0.52 [0.28, 0.96]	2004	- _
Peck 2004	12	14	11	13	21.2%	1.01 [0.74, 1.39]	2004	-
Nguyen 2008	3	14	6	14	1.7%	0.50 [0.15, 1.61]	2008	
Moses 2009	17	29	19	30	13.1%	0.93 [0.61, 1.39]	2009	_ _
Chourdakis 2012	13	34	12	25	6.5%	0.80 [0.44, 1.44]	2012	
Subtotal (95% CI)		130		122	52.4%	0.86 [0.69, 1.08]		◆
Total events	60		71					
Heterogeneity: Tau ² •	= 0.01; Ci	1 ² = 5.	71, df = 5	$(\mathbf{P}=0.)$	34); l ² = :	12%		
Test for overall effect	: Z = 1.27	/ (P = 0	.20)					
Total (95% CI)		328		321	100.0%	0.83 [0.71, 0.97]		•
Total events	134		168					
Heterogeneity: Tau ²	= 0.00; Cl	$h^2 = 10$.38, df =	10 (P =	0.41); f ²	= 4%		0.01 0.1 1 10 10
Test for overall effect				-				0.01 0.1 1 10 10 Favours Early EN Favours Delayed/None
Test for subgroup dif		•		1 (P = 0)).56), 🖻 -	- 0%		ravours carly civ ravours Delayed/None

Figure 2a. Early EN vs delayed nutrient intake: Infectious complications (Subgroup of Early vs No EN or Delayed EN)

.g	Early		Delayed/			Risk Ratio	· • • • •	.g	Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year		M-H, Random, 95% (
2.2.1 Low Control C	Group Mor	tality								
Moore 1986	3	32	9	31	1.9%	0.32 [0.10, 1.08]	1986			
Chiarelli 1990	3	10	7	10	2.6%	0.43 [0.15, 1.20]	1990			
Kompan 2004	9	27	16	25	7.0%	0.52 [0.28, 0.96]	2004			
Malhotra 2004	54	100	64	100	33.6X	0.84 [0.67, 1.07]	2004			
Moses 2009	14	29	15	30	9.4%	0.97 [0.57, 1.62]	2009			
Chourdakts 2012	13	34	12	25	7.4%					
Subtotal (95% CI)		232		221	61.9%	0.75 [0.58, 0.95]			◆	
Total events	96		123							
Heterogeneity: Tau ²			•	$(\mathbf{P}=0)$	26); I ² =	21%				
Test for overall effec	t: Z = 2.34	P = 0	.02)							
2.2.2 High Control	Group Mo	rtality								
Singh 1998	7	21	12	22	5.2%	0.61 [0.30, 1.25]	1998			
Minard 2000	6	12	7	15	4.4%	1.07 [0.49, 2.34]	2000			
Pupelis 2001	10	30	8	30	4.4%	1.25 [0.57, 2.73]	2001			
Peck 2004	12	14	11	13	21.6X	1.01 [0.74, 1.39]	2004		+	
Nguyen 2008	3	14	6	14	2.0%	0.50 [0.15, 1.61]	2008			
Patel 2020	0	15	1	16	0.3%					_
Subtotal (95% CI)		106		110	38.1%	0.94 [0.73, 1.21]			•	
Total events	38		45							
Heterogeneity: Tau ²	= 0.00; Ci	h ľ = 4.	13, df = 5	$\langle \mathbf{P}=0. \rangle$	53); P = (0%				
Test for overall effec	t: Z = 0.47	7 (P = 0	1.64)							
Total (95% CI)		338		331	100.0%	0.82 [0.70, 0.98]			•	
Total events	134		166							
Heterogeneity: Tau ²	= 0.01; Ci	h r² = 12	2.03, df =	11 (P =	0.36); l ²	- 9%		0.01	0.1 1	10 1
Test for overall effec	t: Z = 2.26	6 (P = 0	.02)					0.01	Favours Early EN Favours D	
Test for subgroup di	fferences:	$Cht^2 = 3$	1.71, df =	1 (P = 0)	0.19), r ² -	41.5%			ravours carry cive ravours c	relayed/None

Figure 2b. Early EN vs delayed nutrient intake: Infectious complications (Subgroup of high vs low control group mortality)

	E	arly EN	I	Delay	/ed/No	one		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
1.3.1 EN vs IV Fluids	s/No EN									
Chuntrasakul 1996	6.1	6.3	21	8.35	4.8	17	16.4%	-0.25 [-3.76, 3.28]	1996	
Pupelis 2000	7	41	11	6	34	18	0.6%	1.00 [-27.87, 29.87]	2000	· · · · · · · · · · · · · · · · · · ·
Pupelis 2001 Subtotal (95% CI)	13.9	14.6	30 62	1 6	20.5	30 65	.2% 22.2%	-2.10 [-11.11, 6.91] -0.48 [-3.74, 2.79]		
Heterogeneity: Tau ²	= 0.00; (Cht ² = I	0.15, d	f = 2 (P	= 0.9	3); f ² =	0%			
Test for overall effect				-						
1.3.2 EN vs Delayed	EN									
Eyer 1993	11.6	7.9	19	9.9	6.7	19	12.7%	1.90 [-2.76, 6.56]	1993	- +
Minard 2000	18.5	6.6	12	11.3	6.1	15	9.6%	7.20 [1.34, 13.06]	2000	
Peck 2004	40	32	14	37	33	13	0.8%	3.00 [-21.55, 27.55]	2004	
Kompan 2004	15.9	9.7	27	20.6	18.5	25	6.2%	-4.70 [-12.82, 3.42]	2004	
Nguyen 2008	11.3	3	14	15.9	7.1	14	14.7%	-4.60 [-8.64, -0.56]	2008	
Chourdakis 2012	24.8	7.6	34	28.5	8.9	25	13.7%	-3.70 [-8.02, 0.62]	2012	
Sun 2019	8.31	4.26		11.22	5.43	27		-2.91 [-5.53, -0.29]	2019	
Subtotal (95% CI)			146			138	77.8%	-1.25 [-4.35, 1.84]		◆
Heterogeneity: Tau ² · Test for overall effect				df = 6 ((P= 0)	02); l ² ·	- 61%			
Total (95% CI)			208			203	100.0%	-1.22 [-3.52, 1.07]		•
Heterogeneity: Tau ² Test for overall effect Test for subgroup dif	: Z = 1.0	04 (P -	0.30)						_	-20 -10 0 10 20 Favours Early EN Favours Delayed/None

Figure 3a: Early EN vs delayed nutrient intake: ICU LOS (Subgroup of Early vs No EN or Delayed EN)

Figure 3b. Early EN	vs dela	ayed r	nutrier	nt intak	e: ICL	LOS	(Subgro	oup of high vs low co	ontrol g	roup mortality)
	E	arly EN	I	Dela	yed/No	one		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
2.3.1 Low Control G	roup Mo	ortality	'							
Eyer 1993	11.6	7.9	19	9.9	6.7	19	12.7%	1.90 [-2.76, 6.56]	1993	
Kompan 2004	15.9	9.7	27	20.6	18.5	25	6.2%	-4.70 [-12.82, 3.42]	2004	
Chourdakis 2012 Subtotal (95% CI)	24.8	7.6	34 80	28.5	6.9	25 69	13.7% 32.6%			
Heterogeneity: Tau ² =	6.14; (Cht ² =	3.63, d	lf = 2 (P	- 0.1	6); i ² =	45%			
Test for overall effect:	-		-	-						
2.3.2 High Control G	iroup M	ortalit	y							
Chuntrasakul 1996	8.1	6.3	21	8.35	4.8	17	16.4%	-0.25 [-3.78, 3.28]	1996	_ _
Minard 2000	18.5	8.6	12	11.3	6.1	15	9.6%	7.20 [1.34, 13.06]	2000	
Pupelis 2000	7	41	11	6	34	18	0.6%	1.00 [-27.87, 29.87]	2000	
Pupelis 2001	13.9	14.6	30	16	20.5	30	5.2%	-2.10 [-11.11, 6.91]	2001	
Peck 2004	40	32	14	37	33	13	0.6%	3.00 [-21.55, 27.55]	2004	
Nguyen 2008	11.3	3	14	15.9	7.1	14	14.7%	-4.60 [-8.64, -0.56]	2008	_
Sun 2019	8.31	4.26		11.22	5.43	27		-2.91 [-5.53, -0.29]	2019	
Subtotal (95% CI)			128			134	67.4%	-0.88 [-3.97, 2.21]		•
Heterogeneity: Tau ² =	- 7.23; (Ch1² =	12.49,	df = 6 ($(\mathbf{P}=0)$	05); P	= 52%			
Test for overall effect:	: Z = 0.9	56 (P -	0.58)							
Total (95% CI)			208			203	100.0%	-1.22 [-3.52, 1.07]		•
Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff	: Z = 1.0)4 (P =	0.30)							-20 -10 0 10 20 Favours Early EN Favours Delayed/None

		arly EN			yed/No		(Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	r IV, Random, 95% CI
1.4.1 EN vs IV Fluids	s/No EN									
Singh 1998	14	6.9	19	13	7	16	27.1%	1.00 [-3.46, 5.46]	1998	6 🕂
Pupelis 2000	45	96	11	29	103	16	0.7%	16.00 [-58.04, 90.04]	2000	0
Pupelis 2001 Subtotal (95% CI)	35.3	22.9	30 60	35.8	32.5	30 66	12.2% 40.0%			1
Heterogeneity: Tau ² Test for overall effect	-		-	F = 2 (P	= 0.91)	;	*			
1.4.2 EN vs Delayed	EN									
Chiarelli 1990	69.2	10.4	10	89	18.9	10	13.1%	-19.80 [-33.17, -6.43]	1990	0 —
Minard 2000	30	14.7	12	21.3	13.7	15	16.4%	8.70 [-2.13, 19.53]	2000	0 +
Dvorak 2004	53	34.4	7	37.9	14.6	10	4.7%	15.10 [-11.94, 42.14]	2004	4
Peck 2004	60	44	14	60	36	13	3.7%	0.00 [-30.95, 30.95]	2004	4
Ostradrahimi 2016 Subtotal (95% CI)	17. 6 4	8.2	15 58	23.07	11.69	15 63	22.1× 60.0%			€
Heterogeneity: Tau ²	- 101.85	; Cht ^a	= 12.7	2, df =	4 (P = 0	.01); ^{p2}	= 69%			
Test for overall effect	: Z = 0.3	7 (P =	0.71)							
Total (95% CI)			118			129	100.0%	-1.34 [-7.69, 5.02]		•
Heterogeneity: Tau ² Test for overall effect Test for subgroup dif	: Z = 0.4	1 (P =	0.68)	-	-					-100 -50 0 50 100 Favours Early EN Favours Delayed/None

Figure 4a. Early EN vs delayed nutrient intake: Hospital LOS (Subgroup of Early vs No EN or Delayed EN)

igure 4b. Early EN	vs dela	ayed ı	nutrie	nt inta	ke: Hos	spital	LOS (Sı	ubgroup of high vs lov	v cont	rol group mortality)
	Ea	arly EN		Dela	ayed/No	ne		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
2.4.1 Low Control G	roup Mo	rtality								
Chiarelli 1990	69.2	10.4	10	89	18.9	10	13.1%	-19.80 [-33.17, -6.43]	1990	_ -
Dvorak 2004 Subtotal (95% CI)	53	34.4	7 17	37.9	14.6	10 20				
Heterogeneity: Tau ² = Test for overall effect:				, df = 1	(P = 0.0	02); ř •	- 61%			
2.4.2 High Control G	iroup Mo	ortality	,							
Singh 1998	14	6.9	19	13	7	18	27.1%	1.00 [-3.46, 5.46]	1998	+
Minard 2000	30	14.7	12	21.3	13.7	15	16.4%	8.70 [-2.13, 19.53]	2000	+ - -
Pupells 2000	45	96	11	29	103	16	0.7%	16.00 [-58.04, 90.04]	2000	
Pupelis 2001	35.3	22.9	- 30	35.8	32.5	30	12.2%	-0.50 [-14.73, 13.73]	2001	
Peck 2004	60	44	14	60	36	13	3.7%	0.00 [-30.95, 30.95]	2004	
Ostradrahimi 2016 Subtotal (95% CI)	17. 6 4	8.2	15 101	23.07	11.89	15 109	22.1× 82.2%			+
Heterogeneity: Tau ² = Test for overall effect:				f = 5 (P	= (0.42)	;)%			
Total (95% CI)			118			129	100.0%	-1.34 [-7.69, 5.02]		•
Heterogeneity: Tau ² = Test for overall effect: Test for subgroup diff	Z = 0.4	1 (P =	0.68)	-	-					-100 -50 0 50 100 Favours Early EN Favours Delayed/None

Figure 4b. Early EN vs delayed nutrient intake: Hospital LOS (Subgroup of high vs low control group mortality)

igure ba. Early En		ayeu i arly EN			yed/N		or mech	Mean Difference	ubgrou	Mean Difference
Study or Subgroup	Mean	,		Mean			Weight		Year	IV, Random, 95% CI
1.5.1 EN vs IV Fluids		-		mean						
Chuntrasakul 1996 Subtotal (95% CI)	5.29		21 21	6.12	5.3	17 17	16.3× 18.3%		1996	*
Heterogeneity: Not aj Test for overall effect			0.66)							
1.5.2 EN vs Delayed	EN									
Eyer 1993	10.2	6.1	19	8.1	6.8	19	14.3%	2.10 [-2.66, 6.86]	1993	
Minard 2000	15.1	7.5	12	10.4	6.1	15	12.7%			
Dvorak 2004	31.8	35	7	20.9	14.4	10	0.7%	10.90 [-16.52, 38.32]	2004	
Kompan 2004	12.9	6.1	27	15.6	16.1	25	8.6X	-2.70 [-9.71, 4.31]	2004	
Peck 2004	32	27	14	23	26	13	1.4%	9.00 [-10.99, 28.99]	2004	
Nguyen 2008	9.2	3.4	14	13.7	7.1	14	16.6%	-4.50 [-8.62, -0.38]	2008	_
Sun 2019	4.5	2.58	26	7.15	3.95	27	27.4%	-2.65 [-4.44, -0.86]	2019	
Subtotal (95% CI)			119			123	81.7%	-0.55 [-3.56, 2.46]		•
Heterogeneity: Tau ²	= 7.12; (Cht ² = 3	13.00,	df = 6	$(\mathbf{P}=0)$.04); 1²	= 54%			
Test for overall effect	r: Z = 0.3	36 (P =	0.72)							
Total (95% CI)			140			140	100.0%	-0.75 [-3.15, 1.65]		•
Heterogeneity: Tau ² Test for overall effect Test for subgroup dif	t: Z = 0.6	61 (P =	0.54)		-				-	-20 -10 0 10 20 Favours Early EN Favours Delayed/None

Figure 5a. Early EN vs delayed nutrient intake: Duration of Mechanical Ventilation (Subgroup of Early vs No EN or Delayed EN)

Figure 5b. Early EN vs delayed nutrient intake: Duration of Mechanical Ventilation (Subgroup of higher vs lower control group mortality)

	Ea	arly EN		Dela	yed/N	one		Mean Difference		Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI
2.5.1 Low Control G	roup Mo	ortality	/							
Eyer 1993	10.2	8.1	19	8.1	6.8	19	14.3%	2.10 [-2.66, 6.86]	1993	_ +
Dvorak 2004	31.8	35	7	20.9	14.4	10	0.7%	10.90 [-16.52, 38.32]	2004	
Kompan 2004	12.9	8.1	27	15.6	16.1	25	8.6X	-2.70 [-9.71, 4.31]	2004	- +
Subtotal (95% CI)			53			54	23.6%	0.80 [-3.10, 4.69]		*
Heterogeneity: Tau ² =	• 0.00; (Chi² =	1.77, d	lf = 2 (l	P = 0.4	11); i ² =	0%			
Test for overall effect:	Z = 0.4	10 (P -	0.69)							
2.5.2 High Control G	roup Me	ortalit	у							
Chuntrasakul 1996	5.29	6.3	21	6.12	5.3	17	18.3%	-0.83 [-4.52, 2.86]	1996	_ _
Minard 2000	15.1	7.5	12	10.4	6.1	15	12.7%	4.70 [-0.55, 9.95]	2000	—
Peck 2004	32	27	14	23	26	13	1.4%	9.00 [-10.99, 28.99]	2004	
Nguyen 2008	9.2	3.4	14	13.7	7.1	14	16.6X	-4.50 [-8.62, -0.38]	2008	
Sun 2019	4.5	2.58	26	7.15	3.95	27	27.4%	-2.65 [-4.44, -0.86]	2019	+
Subtotal (95% CI)			87			86	76.4%	-1.10 [-4.04, 1.84]		◆
Heterogeneity: Tau ² =	• 5.72; (Cht² =	9.73, d	lf = 4 (l	P = 0.0)5); P =	59%			
Test for overall effect:	Z = 0.7	'3 (P -	0.46)	-						
Total (95% CI)			140			140	100.0%	-0.75 [-3.15, 1.65]		•
Heterogeneity: Tau ² =	4.64; (Ch1² =	13.22,	df = 7	$(\mathbf{P}=0)$.07); f ²	= 47%			
Test for overall effect:					-					-20 -10 0 10 20 Favours Early EN Favours Delayed/None
Test for subgroup diff					$(\mathbf{P}=0)$).45), l ²	- 0%			ravours carry civ Favours Delayed/None

References

Included Studies

- 1. Moore EE, Jones TN. Benefits of immediate jejunostomy feeding after major abdominal trauma—a prospective, randomized study. J Trauma. 1986 Oct;26(10):874-81.
- 2. Chiarelli A, Enzi G, Casadei A, Baggio B, Valerio A, Mazzoleni F. Very early nutrition supplementation in burned patients. Am J Clin Nutr. 1990 Jun;51(6):1035-9.
- 3. Eyer SD, Micon LT, Konstantinides FN, Edlund DA, Rooney KA, Luxenberg MG, Cerra FB. Early enteral feeding does not attenuate metabolic response after blunt trauma. J Trauma. 1993 May;34(5):639-43.
- 4. Chuntrasakul C, Siltharm S, Chinswangwatanakul V, Pongprasobchai T, Chockvivatanavanit S, Bunnak A. Early nutritional support in severe traumatic patients. J Med Assoc Thai 1996 Jan; 79(1):21-6.
- 5. Singh G, Ram RP, Khanna SK. Early post-operative enteral feeding in patients with nontraumatic intestinal perforation and peritonitis. J Am Coll Surg. 1998 Aug;187(2):142-6.
- 6. Kompan L, Kremzar B, Gadzijev E, Prosek M. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med. 1999 Feb;25(2):157-61.
- 7. Minard G, Kudsk KA, Melton S, Patton JH, Tolley EA. Early versus delayed feeding with an immune-enhancing diet in patients with severe head injuries. JPEN J Parenter Enteral Nutr. 2000 May-Jun;24(3):145-9.
- 8. Pupelis G, Austrums É, Jansone A, Sprucs R, Wehbi H. Randomised trial of safety and efficacy of postoperative enteral feeding in patients with severe pancreatitis: preliminary report. Eur J Surg 2000;166(5):383-7.
- 9. Pupelis G, Selga G, Austrums E, Kaminski A. Jejunal feeding, even when instituted late, improves outcomes in patients with severe pancreatitis and peritonitis. Nutrition. 2001 Feb;17(2):91-4.
- 10. Dvorak MF, Noonan VK, Belanger L, Bruun B, Wing PC, Boyd MC, Fisher C. Early versus late enteral feeding in patients with acute cervical spinal cord injury: a pilot study. Spine. 2004 May 1;29(9):E175-80.
- 11. Kompan L, Vidmar G, Spindler-Vesel A, Pecar J. Is early enteral nutrition a risk factor for gastric intolerance and pneumonia? Clin Nutr. 2004 Aug;23(4):527-32.
- 12. Malhotra A, Mathur AK, Gupta S. Early enteral nutrition after surgical treatment of gut perforations: a prospective randomised study. J Postgrad Med. 2004 Apr-Jun;50(2):102-6.
- 13. Peck MD, Kessler M, Cairns BA, Chang YH, Ivanova A, Schooler W. Early enteral nutrition does not decrease hypermetabolism associated with burn injury. J Trauma. 2004 Dec;57(6):1143-9.
- 14. Nguyen NQ, Fraser RJ, Bryant LK, Burgstad C, Chapman MJ, Bellon M, Wishart J, Holloway RH, Horowitz M. The impact of delaying enteral feeding on gastric emptying, plasma cholecystokinin, and peptide YY concentrations in critcally ill patients. Crit Care Med 2008;36(5):1655-6.
- 15. Moses V, Mahendri NV, John G, Peter JV, Ganesh A. Early hypocaloric enteral nutritional supplementation in acute organophosphate poisoning--a prospective randomized trial. Clin Toxicol (Phila). 2009 May;47(5):419-24.
- 16. Chourdakis M, Kraus MM, Tzellos T, Sardeli C, Peftoulidou M, Vassilakos D, et al. Effect of early compared with delayed enteral nutrition on endocrine function in patients with traumatic brain injury: an open-labeled randomized trial. JPEN Journal of parenteral and enteral nutrition. 2012;36(1):108-16.
- 17. Ostadrahimi A, Nagili B, Asghari-Jafarabadi M, Beigzali S, Zalouli H, Lak S. A proper enteral nutrition support improves sequential organ failure score and decreases length of stay in hospital in burned patients. Iranian Red Crescent Medical Journal. 2016 Feb;18(2)
- 18. Sun JK, Zhang WH, Chen WX, Wang X, Mu XW. Effects of early enteral nutrition on Th17/Treg cells and IL-23/IL-17 in septic patients. World J Gastroenterol. 2019 Jun 14;25(22):2799-2808. doi: 10.3748/wjg.v25.i22.2799. PMID: 31236002; PMCID: PMC6580355.
- 19. Patel JJ, Kozeniecki M, Peppard WJ, et al. Phase 3 Pilot Randomized Controlled Trial Comparing Early Trophic Enteral Nutrition With "No Enteral Nutrition" in Mechanically Ventilated Patients With Septic Shock. JPEN J Parenter Enteral Nutr. 2020;44(5):866-873. doi:10.1002/jpen.170

Excluded Studies	Reasons
Ryan JA Jr, Page CP, Babcock L. Early postoperative jejunal feeding of elemental diet in gastrointestinal surgery. Am Surg. 1981 Sep;47(9):393- 403.	Elective surgery patients
Seri S, Aquilio E. Effects of early nutritional support in patients with abdominal trauma. Ital J Surg Sci. 1984;14(3):223-7.	Not ICU patients
Grahm TW, Zadrozny DB, Harrington T. The benefits of early jejunal hyperalimentation in the head-injured patient. Neurosurgery 1989 Nov;25(5):729-35.	Pseudo-randomized
Jones TN, Moore FA, Moore EE, McCroskey BL. Gastrointestinal symptoms attributed to jejunostomy feeding after major abdominal trauma – a critical analysis. Crit Care Med 1989 Nov;17(11):1146-50.	No clinical outcomes
Moore FA, Moore EE, Jones TN, McCroskey BL, Peterson VM. TEN versus TPN following major abdominal traumareduced septic morbidity. J Trauma. 1989 Jul;29(7):916-22; discussion 922-3.	Surgery patients
Schroeder D, Gillanders L, Mahr K, Hill GL. Effects of immediate postoperative enteral nutrition on body composition, muscle function, and wound healing. JPEN J Parenter Enteral Nutr. 1991 Jul-Aug;15(4):376-83.	Elective surgery patients
The Veterans Affairs Total Parenteral Nutrition Cooperative Study Group. Perioperative total parenteral nutrition in surgical patients. N Engl J Med. 1991 Aug 22;325(8):525-32.	Elective surgery patients
Binderow SR, Cohen SM, Wexner SD, Nogueras JJ. Must early postoperative oral intake be limited to laparoscopy? Dis Colon Rectum. 1994 Jun;37(6):584-9.	Elective surgery patients
Jenkins ME, Gottschlich MM, Warden GD. Enteral feeding during operative procedures in thermal injuries. J Burn Care Rehabil 1994 Mar- Apr;15(2):199-205.	Pediatric population
Braga M, Vignali A, Gianotti L, Cestari A, Profili M, Di Carlo V. Benefits of early postoperative enteral feeding in cancer patients. Infusionsther Transfusionsmed 1995 Oct;22(5):280-4.	Elective surgery patients
Brown DN, Miedema BW, King PD, Marshall JB. Safety of early feeding after percutaneous endoscopic gastrostomy. J Clin Gastroenterol. 1995 Dec;21(4):330-1.	Elective surgery patients
Hasse JM, Blue LS, Liepa GU, Goldstein RM, Jennings LW, Mor E, Husberg BS, Levy MF, Gonwa TA, Klintmalm GB. Early enteral nutrition support in patients undergoing liver transplantation. JPEN J Parenter Enteral Nutr. 1995 Nov-Dec;19(6):437-43.	Elective surgery patients
Reissman P, Teoh TA, Cohen SM, Weiss EG, Nogueras JJ, Wexner SD. Is early oral feeding safe after elective colorectal surgery? A prospective randomized trial. Ann Surg. 1995 Jul;222(1):73-7.	Elective surgery patients
Seenu V, Goel AK. Early oral feeding after elective colorectal surgery: is it safe. Trop Gastroenterol. 1995 Oct-Dec;16(4):72-3.	Elective surgery patients
Beier-Holgersen R, Boesby S. Influence of postoperative enteral nutrition on postsurgical infections. Gut 1996;39(6):833-5.	Surgery patients
Carr CS, Ling KD, Boulos P, Singer M. Randomised trial of safety and efficacy of immediate postoperative enteral feeding in patients undergoing gastrointestinal resection. BMJ. 1996 Apr 6;312(7035):869-71.	Elective surgery patients
Choudhry U, Barde CJ, Markert R, Gopalswamy N. Percutaneous endoscopicgastrostomy: a randomized prospective comparison of early and delayed feeding. Gastrointest Endosc. 1996 Aug;44(2):164-7. PubMed PMID: 8858322.	Elective surgery patients
Ortiz H, Armendariz P, Yarnoz C. Is early postoperative feeding feasible in elective colon and rectal surgery? Int J Colorectal Dis. 1996;11(3):119- 21.	Elective surgery patients
Hartsell PA, Frazee RC, Harrison JB, Smith RW. Early postoperative feeding after elective colorectal surgery. Arch Surg. 1997 May;132(5):518-20; discussion 520-1.	Elective surgery patients
Heslin MJ, Latkany L, Leung D, Brooks AD, Hochwald SN, Pisters PW, Shike M, Brennan MF. A prospective, randomized trial of early enteral feeding after resection of upper gastrointestinal malignancy. Ann Surg. 1997 Oct;226(4):567-77.	Not ICU patients
Schilder JM, Hurteau JA, Look KY, Moore DH, Raff G, Stehman FB, Sutton GP. A prospective controlled trial of early postoperative oral intake following major abdominal gynecologic surgery. Gynecol Oncol. 1997 Dec;67(3):235-40.	Elective surgery patients

Xing Shao Shang Wait Ke Za Zhi. 1997. Jul;13(4):267-71. No clinical outcomes Watters JM, Kirkpatrick SM, Norris SB, Shamji FM, Wells GA. Immediate postoperative enteral feeding results in impaired respiratory mechanics Elective surgery patients and decreased mobility. Ann Surg. 1997 Sep;228(3):369-77 No clinical outcomes Elective surgery patients McCarter TL, Condon SC, Aguilar RC, Gibson DJ, Chen YK. Randomized prospective trial of early versus delayed feeding after percutaneous endoscopic gastrostomy placement. Am J Gastroenterol. 1998 Mar;33(3):149-21. Not ICU patients Schwerk W, Bohm B, Haase O, Junghans T, Müller JM. Langenbecks. Laparoscopic versus conventional colorectal resection: a prospective randomized prospective trial of immediate vs. next-day feeding after percutaneous endoscopic patients uson early postoperative leading. Arch Surg. 1999 Mar;333(1):49-55. Elective surgery patients Stewart RT, Woods RJ, Colloy PT, Fink RJ, Mackay JR, Keck JO. Early feeding after elective open colorectal resections: a prospective patients Elective surgery patients Zaloga GP. Early enterial nutritional support improves outcome: hypothesis or fact? CrIC Care Med 1999 Feb;27(2):259-61. Review paper Beatie AH, Prach AT, Baxter JP, Pennington CR. A randomized controlled trial evaluating the use of enteria nutrition al supplements postoperatively patients. Elective surgery patients. Immadiated LL, Surger MA, Stawa LL, Surg		
Watters JM, Kirkpatrick SM, Norris SB, Shamji FM, Wells GA. Immediate postoperative enteral feeding results in impaired respiratory mechanics Elective surgery patients McCarter TL, Condon SC, Aguilar RC, Gibson DJ, Chen YK. Randomized prospective trial of early versus delayed feeding after percutaneous endoscopic gastrostomy placement. Am J Gastroenterol. 1998 Mar;39(3):419-21. Not ICU patients Stein J, Schulte-Bockholt A, Sabin M, Keymling M. A randomized prospective trial of immediate vs. next day feeding after percutaneous endoscopic gastrostomy initensive care patients. Intensive Care Med. 2002;28(11):1666-1660. doi:10.1007/s00134-002-1473-5 Not ICU patients Schwenk W, Böhm B, Haase O, Junghans T, Müller JM. Langenbecks. Laparoscopic versus conventional colorectal resection: a prospective patients indensive teeding. Arch Surg. 1998 Mar;383(1):49-55. Elective surgery patients Stewart BT, Woods RJ, Collopy BT, Fink RJ, Mackay JR, Keck JO. Early feeding after elective open colorectal resections: a prospective gateristic seturg. Arch Surg. 1998 Mar;383(1):49-55. Review surgery patients Beier-Holgres R, Brandstrup B. Influence of early postoperative enterial nutrition versus placebo on cell-mediated immunity, as measured with the Elective surgery patients (antional support improrters outcome: hypothesis or fact? Crit Care Med 1999 Feb;27(2):29-61. Review paper Beattie AH, Prach AT, Baxter JP, Pennington CR. A randomized controlled trial of the effect of early enteral nutrition on markers of the Inflammatory response in predicted severe acute pancreatils. Br J Surg. 2000 Oct;87(10):1375-81. PubMed PMID: 11044164. EN vs no nutrition inflammatory response in predi	Wang S, Wang S, Li A. [A clinical study of early enteral feeding to protect the gut function in burned patients] [Article in Chinese]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 1997 Jul:13(4):267-71.	Unclear if ICU patients; No clinical outcomes
McCarter TL, Condon SC, Aguilar RC, Gibson DJ, Chen YK. Randomized prospective trial of early versus delayed feeding after percutaneous Not ICU patients Stein J, Schulk-Bockholt A, Sabin M, Keymling M. A randomized prospective trial of immediate vs. next-day feeding after percutaneous endoscopic Not ICU patients Stein J, Schulk-Bockholt A, Sabin M, Keymling M. A randomized prospective trial of immediate vs. next-day feeding after percutaneous endoscopic Not ICU patients Schwenk W, Böhm B, Haase O, Junghans T, Müller JM. Langenbecks. Laparoscopic versus conventional colorectal resection: a prospective randomized trady of postoperative leus and early postoperative feeding. Arch Surg. 1998 Mar;383(1):49-55. patients Stewart BT, Woods RJ, Collopy BT, Fink RJ, Mackay JR, Keck JO. Early feeding after elective open colorectal resections: a prospective patients patients Zaloga GP. Early enteral nutritional support improves outcome: hypothesis or fact? Crit Care Med 1999 Feb;27(2):259-61. Review paper Beattie AH, Prach AT, Baxter JP, Pennington CR. A randomized controlled trial evaluating the use of enteral nutrition on markers of the inflammatory response in predicted severe acute pancreatitis. Br J Surg. 2000 Cut;87(10):1375-81. PubMed PMID: 11044164. EN van on untrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(2):2264-70. Meta-analysis Powell JJ, Micrison JT, Fearon KCR, Ross JA, Sirwarden AK. Randomized controlled trial of the effect of early enteral nutrition on markers of the inflammatory response in predicted severe acute pancreatits. Br J Surg. 2000 Cut;87(10):1375-81. PubMed PM	Watters JM, Kirkpatrick SM, Norris SB, Shamji FM, Wells GA. Immediate postoperative enteral feeding results in impaired respiratory mechanics	Elective surgery
Stein J, Schulte-Bockholt A, Sabin M, Keymling M. A randomized prospective trial of immediate vs. next-day feeding after percutaneous endoscopic Not ICU patients gastrostomy in intensive care patients. Intensive Care Med. 2002;28(11):1656-1660. doi:10.1007/s00134-002-1473-5 Elective surgery Schwenk W, Böhm B, Haase O, Junghans T, Müller JM. Langenbecks. Laparoscopic versus conventional colorectal resection: a prospective Elective surgery randomized trial. Aust N Z J Surg. 1998 Feb:68(2):125-8. Elective surgery Beier-Holgersen R, Brandstrup B. Influence of early postoperative enteral nutrition versus placebo on cell-mediated immunity, as measured with the Elective surgery Zaloga GP. Early enteral nutritional support improves outcome: hypothesis or fact? Cnit Care Med 1999 Feb:27(2):259-61. Review paper Beatien AH, Prach AT, Baxter JP, Pennington CR. A randomized controlled trial or thal of the effect of early enteral nutritional supplements postoperatively Inmanuorished surgical patients. Elective surgery patients Elective surgery patients Elective surgery patients Powell JJ, Murchison JT, Fearon KC, Ross JA, Sirwardena AK. Randomized controlled trial of the effect of early enteral nutrition on markers of the EN vs no nutrition Instrumentary Inflammatory response in prediced severe acute pancreatitis. Br J Surg. 2000 Oct;87(10):1375-81. PubMed PMID: 11044164. Elective surgery Mark FE, Zaloga GP. Early ent	McCarter TL, Condon SC, Aguilar RC, Gibson DJ, Chen YK. Randomized prospective trial of early versus delayed feeding after percutaneous	
Schwenk W, Böhm B, Haase O, Junghans T, Müller JM. Langenbecks. Laparoscopic versus conventional colorectal resection: a prospective patients Elective surgery patients Stewart BT, Woods RJ, Collopy BT, Fink RJ, Mackay JN, Keck JO. Early feeding after elective open colorectal resections: a prospective patients Elective surgery patients Beier-Holgersen R, Brandstrup B. Influence of early postoperative enteral nutrition versus placebo on cell-mediated immunity, as measured with the Elective surgery patients Elective surgery patients Zaloga GP, Early enteral nutritional support improves outcome: hypothesis or fact? Crit Care Med 1999 Feb;27(2):259-61. Review paper Beatrie AH, Prach AT, Baxter JP, Pennington CR. A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively patients Elective surgery patients Powell JJ, Murchison JT, Fearon KC, Ross JA, Siriwardena AK. Randomized controlled trial of the effect of early enteral nutrition on markers of the inflammatory response in predicted severe acute pancreatitis. Br J Surg. 2000 Oct;87(10):1375-81. PubMed PMID: 11044164. EN vs no nutrition Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta-analysis Mata-analysis Mark PE, Zaloga GP, Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. Meta-analysis Mark PE, Zaloga GP, Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. M	Stein J, Schulte-Bockholt A, Sabin M, Keymling M. A randomized prospective trial of immediate vs. next-day feeding after percutaneous endoscopic	Not ICU patients
Stewart BT, Woods RJ, Collopy BT, Fink RJ, Mackay JR, Keck JO. Early feeding after elective open colorectal resections: a prospective randomized trial. Aust N Z J Surg. 1998 Feb;58(2):125-8. Elective surgery patients Beier-Holgersen R, Brandstrup B. Influence of early postoperative enteral nutrition versus placebo on cell-mediated immunity, as measured with the platents Elective surgery patients Zaloga GP. Early enteral nutritional support improves outcome: hypothesis or fact? Crit Care Med 1999 Feb;27(2):259-61. Review paper Beattie AH, Prach AT, Baxter JP, Pennington CR. A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively im malnourished surgical patients. Gut. 2000 Jun;46(6):813-8. Patients Powell JJ, Murchison JT, Fearon KC, Ross JA, Siriwardena AK. Randomized controlled trial of the effect of early enteral nutrition on markers of the inflammatory response in predicted severe acute pancreatitis. Br J Surg. 2000 Cct;87(10):1375-81. PubMed PMID: 11044164. EN vs no nutrition Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral neeral feeding on the prevention of enterogenic infection in severely burned patients. 2001 Mar;272(2):145-9. Meta-analysis Peng YZ, Yuan ZQ, Xiao GX. Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 Mar;272(2):145-9. No clinical outcomes Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients freaded with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32. <	Schwenk W, Böhm B, Haase O, Junghans T, Müller JM. Langenbecks. Laparoscopic versus conventional colorectal resection: a prospective	• •
Beier-Holgersen R, Brandstrup B. Influence of early postoperative enteral nutrition versus placebo on cell-mediated immunity, as measured with the Mutitest CMI. Scand J Gastroenterol. 1999 Jan;34(1):98-102. PubMed PMID: 10048740. Elective surgery patients Zaloga GP. Early enteral nutritional support improves outcome: hypothesis or fact? Crit Care Med 1999 Feb;27(2):259-61. Review paper Beattie AH, Prach AT, Baxter JP, Pennington CR. A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively in malnourished surgical patients. Gut. 2000 Jun;46(6):813-8. For andomised controlled trial of the effect of early enteral nutrition on markers of the Inflammatory response in predicted severe acute pancreatitis. Br J Surg. 2000 Oct;87(10):1375-81. PubMed PMID: 11044164. EN vs no nutrition Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus "niib y mouth" after gastrointestinal surgery: systematic review and meta- analysis of controlled trials. BMJ. 2001 Oct 6;323(7316):773-6. Meta-analysis Mark PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. Meta-analysis Peng VZ, Yuan ZQ, Xiao GX.Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 No clinical outcomes Mar;7(2):145-9. Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;35(5):619-32. Elective surgery patients <td< td=""><td>Stewart BT, Woods RJ, Collopy BT, Fink RJ, Mackay JR, Keck JO. Early feeding after elective open colorectal resections: a prospective</td><td>Elective surgery</td></td<>	Stewart BT, Woods RJ, Collopy BT, Fink RJ, Mackay JR, Keck JO. Early feeding after elective open colorectal resections: a prospective	Elective surgery
Beattie AH, Prach AT, Baxter JP, Pennington CR. A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively in malnourished surgical patients. Gut. 2000 Jun;46(6):813-8. Elective surgery patients Powell JJ, Murchison JT, Fearon KC, Ross JA, Siriwardena AK. Randomized controlled trial of the effect of early enteral nutrition on markers of the inflammatory response in predicted severe acute pancreatitis. Br J Surg. 2000 Oct;87(10):1375-81. PubMed PMID: 11044164. EN vs no nutrition Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta- analysis of controlled trials. BMJ. 2001 Oct 6;323(7316):773-6. Meta-analysis Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. Meta-analysis Peng YZ, Yuan ZQ, Xiao GX.Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 No clinical outcomes Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32. Elective surgery patients Pseudo-randomized Verset(4):348-52. Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81. Pseudo-randomized Not ICU patients </td <td>Beier-Holgersen R, Brandstrup B. Influence of early postoperative enteral nutrition versus placebo on cell-mediated immunity, as measured with the</td> <td>Elective surgery</td>	Beier-Holgersen R, Brandstrup B. Influence of early postoperative enteral nutrition versus placebo on cell-mediated immunity, as measured with the	Elective surgery
Beattie AH, Prach AT, Baxter JP, Pennington CR. A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively in malnourished surgical patients. Gut. 2000 Jun;46(6):813-8. Elective surgery patients Powell JJ, Murchison JT, Fearon KC, Ross JA, Siriwardena AK. Randomized controlled trial of the effect of early enteral nutrition on markers of the inflammatory response in predicted severe acute pancreatitis. Br J Surg. 2000 Oct;87(10):1375-81. PubMed PMID: 11044164. EN vs no nutrition Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta- analysis of controlled trials. BMJ. 2001 Oct 6;323(7316):773-6. Meta-analysis Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. Meta-analysis Peng YZ, Yuan ZQ, Xiao GX.Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 No clinical outcomes Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32. Elective surgery patients Pseudo-randomized Verset44(3):348-52. Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81. Pseudo-randomized Page RD		Review paper
Powell JJ, Murchison JT, Fearon KC, Ross JA, Siriwardena AK. Randomized controlled trial of the effect of early enteral nutrition on markers of the inflammatory response in predicted severe acute pancreatitis. Br J Surg. 2000 Oct;87(10):1375-81. PubMed PMID: 11044164. EN vs no nutrition Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta- analysis of controlled trials. BMJ. 2001 Oct 6;323(7316):773-6. Meta-analysis Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. Meta-analysis Peng YZ, Yuan ZQ, Xiao GX. Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 No clinical outcomes Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. Meta-analysis Peng YZ, Yuan ZQ, Xiao GX. Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 No clinical outcomes Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32. Elective surgery patients 2002 Oct-Dec;48(4):348-52. Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 M	Beattie AH, Prach AT, Baxter JP, Pennington CR. A randomised controlled trial evaluating the use of enteral nutritional supplements postoperatively	Elective surgery
Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta- analysis of controlled trials. BMJ. 2001 Oct 6;323(7316):773-6. Meta-analysis Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. Meta-analysis Peng YZ, Yuan ZQ, Xiao GX.Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 No clinical outcomes Mar;27(2):145-9. Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32. Elective surgery patients de Aguilar-Nascimento JE, Göelzer J. [Early feeding after intestinal anastomoses: risks or benefits?] [Article in Portuguese] Rev Assoc Med Bras. Elective surgery patients Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81. Pseudo-randomized Page RD, Oo AY, Russell GN, Pennefather SH. Intravenous hydration versus naso-jejunal enteral feeding after esophagectomy: a randomised study. Eur J Cardiothorac Surg. 2002 Nov;22(5):666-72. PubMed PMID: 12414028. Not ICU patients Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Sep;9(9):2105-8.	Powell JJ, Murchison JT, Fearon KC, Ross JA, Siriwardena AK. Randomized controlled trial of the effect of early enteral nutrition on markers of the	
Marik PE, Zaloga GP. Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 2001 Dec;29(12):2264-70. Meta-analysis Peng YZ, Yuan ZQ, Xiao GX.Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 No clinical outcomes Mari;27(2):145-9. Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32. Elective surgery patients de Aguilar-Nascimento JE, Göelzer J. [Early feeding after intestinal anastomoses: risks or benefits?] [Article in Portuguese] Rev Assoc Med Bras. Elective surgery patients 2002 Oct-Dec;48(4):348-52. Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81. Pseudo-randomized Page RD, Oo AY, Russell GN, Pennefather SH. Intravenous hydration versus naso-jejunal enteral feeding after esophagectomy: a randomised study. Eur J Cardiothorac Surg. 2002 Nov;22(5):666-72. PubMed PMID: 12414028. Not ICU patients Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Not early vs delayed Et Sep;9(9):2105-8. Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlled Elective surgery	Lewis SJ, Egger M, Sylvester PA, Thomas S. Early enteral feeding versus "nil by mouth" after gastrointestinal surgery: systematic review and meta-	Meta-analysis
Peng YZ, Yuan ZQ, Xiao GX.Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001 No clinical outcomes Mar;27(2):145-9. Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32. Elective surgery patients de Aguilar-Nascimento JE, Göelzer J. [Early feeding after intestinal anastomoses: risks or benefits?] [Article in Portuguese] Rev Assoc Med Bras. Elective surgery patients 2002 Oct-Dec;48(4):348-52. Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81. Pseudo-randomized Page RD, Oo AY, Russell GN, Pennefather SH. Intravenous hydration versus naso-jejunal enteral feeding after esophagectomy: a randomised study. Eur J Cardiothorac Surg. 2002 Nov;22(5):666-72. PubMed PMID: 12414028. Not ICU patients Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Sep;9(9):2105-8. Not early vs delayed Et Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlled Elective surgery		Meta-analysis
Soliani P, Dell'Abate P, Del Rio P, Arcuri MF, Salsi P, Cortellini P, Sianesi M. [Early enteral nutrition in patients treated with major surgery of the abdomen and the pelvis] [Article in Italian] Chir Ital. 2001 Sep-Oct;53(5):619-32.Elective surgery patientsde Aguilar-Nascimento JE, Göelzer J. [Early feeding after intestinal anastomoses: risks or benefits?] [Article in Portuguese] Rev Assoc Med Bras.Elective surgery patients2002 Oct-Dec;48(4):348-52.Elective surgery patientsPseudo-randomizedIbrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81.Pseudo-randomizedPage RD, Oo AY, Russell GN, Pennefather SH. Intravenous hydration versus naso-jejunal enteral feeding after esophagectomy: a randomised study. Eur J Cardiothorac Surg. 2002 Nov;22(5):666-72. PubMed PMID: 12414028.Not ICU patientsZhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Sep;9(9):2105-8.Not early vs delayed Et Sep;9(9):2105-8.Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlledElective surgery	Peng YZ, Yuan ZQ, Xiao GX.Burns. Effects of early enteral feeding on the prevention of enterogenic infection in severely burned patients. 2001	No clinical outcomes
de Aguilar-Nascimento JE, Göelzer J. [Early feeding after intestinal anastomoses: risks or benefits?] [Article in Portuguese] Rev Assoc Med Bras. Elective surgery 2002 Oct-Dec;48(4):348-52. Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated Pseudo-randomized patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81. Page RD, Oo AY, Russell GN, Pennefather SH. Intravenous hydration versus naso-jejunal enteral feeding after esophagectomy: a randomised Not ICU patients ztudy. Eur J Cardiothorac Surg. 2002 Nov;22(5):666-72. PubMed PMID: 12414028. Not early vs delayed EN Not early vs delayed EN Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Not early vs delayed EN Sep;9(9):2105-8. Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlled Elective surgery		• •
Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated Pseudo-randomized patients: results of a clinical trial. JPEN J Parenter Enteral Nutr. 2002 May-Jun;26(3):174-81. Page RD, Oo AY, Russell GN, Pennefather SH. Intravenous hydration versus naso-jejunal enteral feeding after esophagectomy: a randomised Not ICU patients study. Eur J Cardiothorac Surg. 2002 Nov;22(5):666-72. PubMed PMID: 12414028. Not ICU patients Not early vs delayed Et Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Not early vs delayed Et Sep;9(9):2105-8. Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlled Elective surgery	de Aguilar-Nascimento JE, Göelzer J. [Early feeding after intestinal anastomoses: risks or benefits?] [Article in Portuguese] Rev Assoc Med Bras.	Elective surgery
Page RD, Oo AY, Russell GN, Pennefather SH. Intravenous hydration versus naso-jejunal enteral feeding after esophagectomy: a randomised study. Eur J Cardiothorac Surg. 2002 Nov;22(5):666-72. PubMed PMID: 12414028. Not ICU patients Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Not early vs delayed El Sep;9(9):2105-8. Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlled Elective surgery	Ibrahim EH, Mehringer L, Prentice D, Sherman G, Schaiff R, Fraser V, Kollef MH. Early versus late enteral feeding of mechanically ventilated	Pseudo-randomized
Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Not early vs delayed Et Sep;9(9):2105-8. Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlled Elective surgery	Page RD, Oo AY, Russell GN, Pennefather SH. Intravenous hydration versus naso-jejunal enteral feeding after esophagectomy: a randomised	Not ICU patients
Feo CV, Romanini B, Sortini D, Ragazzi R, Zamboni P, Pansini GC, Liboni A. Early oral feeding after colorectal resection: a randomized controlled Elective surgery	Zhao G, Wang CY, Wang F, Xiong JX. Clinical study on nutrition support in patients with severe acute pancreatitis. World J Gastroenterol. 2003 Sep:9(9):2105-8.	Not early vs delayed EN
study. ANZ J Surg. 2004 May;74(5):298-301.		Elective surgery patients
Kaur N, Gupta MK, Minocha VR. Early enteral feeding by nasoenteric tubes in patients with perforation peritonitis. World J Surg 2005 Not ventilated patients	Kaur N, Gupta MK, Minocha VR. Early enteral feeding by nasoenteric tubes in patients with perforation peritonitis. World J Surg 2005	Not ventilated patients as confirmed by authors
Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative Systematic review complications. Cochrane Database Syst Rev. 2006 Oct 18;(4):CD004080.	Andersen HK, Lewis SJ, Thomas S. Early enteral nutrition within 24h of colorectal surgery versus later commencement of feeding for postoperative	
	Chen G, Han C. Economic evaluation of early enteral nutrition in severely burned patients. Chinese Journal of Clinical Nutrition. 2006;1:003.	No clinical outcomes

Dong GH, Cai JF, Hao J, Zhong QG, Li YJ. [Effect of early enteral nutrition onimmune function of the patients after operation for severe abdominal trauma]. Zhonghua Wei Chang Wai Ke Za Zhi. 2006 Mar;9(2):145-7. Chinese.	Elective surgery patients
Wasiak J, Cleland H, Jeffery R. Early versus delayed enteral nutrition support for burn injuries. Cochrane Database Syst Rev. 2006 Jul 19;3:CD005489.	Systematic review
Wasiak J, Cleland H, Jeffery R. Early versus late enteral nutritional support in adults with burn injury: a systematic review. J Hum Nutr Diet. 2007 Apr;20(2):75-83.	Systematic review
Bechtold ML, Matteson ML, Choudhary A, Puli SR, Jiang PP, Roy PK. Early versus delayed feeding after placement of a percutaneous endoscopic gastrostomy: a meta-analysis. Am J Gastroenterol. 2008 Nov;103(11):2919-24.	Meta-analysis
Petrov MS, Pylypchuk RD, Emelyanov NV. Systematic review: nutritional support in acute pancreatitis. Aliment Pharmacol Ther. 2008 Sep 15;28(6):704-12. Review. PubMed PMID: 19145726.	Meta-analysis
Doig GS, Heighes PT, Simpson F, Sweetman EA, Davies AR. Early enteral nutrition, provided within 24 h of injury or intensive care unit admission, significantly reduces mortality in critically ill patients: a meta-analysis of randomised controlled trials. Intensive Care Med. 2009 Dec;35(12):2018-27. Epub 2009 Sep 24. PubMed PMID: 19777207.	Meta-analysis
Lidder PG, Lewis S, Duxbury M, Thomas S. Systematic review of postdischarge oral nutritional supplementation in patients undergoing GI surgery. Nutr Clin Pract. 2009 Jun-Jul;24(3):388-94. Review.	Meta-analysis
Minig L, Biffi R, Zanagnolo V, Attanasio A, Beltrami C, Bocciolone L, Botteri E, Colombo N, Iodice S, Landoni F, Peiretti M, Roviglione G, Maggioni A. Reduction of postoperative complication rate with the use of early oral feeding in gynecologic oncologic patients undergoing a major surgery: a randomized controlled trial. Ann Surg Oncol. 2009 Nov;16(11):3101-10.	Meta-analysis
Minig L, Biffi R, Zanagnolo V, Attanasio A, Beltrami C, Bocciolone L, Botteri E, Colombo N, Iodice S, Landoni F, Peiretti M, Roviglione G, Maggioni A. Early oral versus "traditional" postoperative feeding in gynecologic oncology patients undergoing intestinal resection: a randomized controlled trial. Ann Surg Oncol. 2009 Jun;16(6):1660-8.	Elective surgery patients
Bakker OJ, van Santvoort HC, van Brunschot S, Ahmed Ali U, Besselink MG, Boermeester MA, Bollen TL, Bosscha K, Brink MA, Dejong CH, van Geenen EJ, van Goor H, Heisterkamp J, Houdijk AP, Jansen JM, Karsten TM, Manusama ER, Nieuwenhuijs VB, van Ramshorst B, Schaapherder AF, van der Schelling GP, Spanier MB, Tan A, Vecht J, Weusten BL, Witteman BJ, Akkermans LM, Gooszen HG; Dutch Pancreatitis Study Group. Pancreatitis, very early compared with normal start of enteral feeding (PYTHON trial): design and rationale of a randomised controlled multicenter trial. Trials. 2011 Mar 10;12:73.	Study protocol
Barlow R, Price P, Reid TD, Hunt S, Clark GW, Havard TJ, Puntis MC, Lewis WG. Prospective multicentre randomised controlled trial of early enteral nutrition for patients undergoing major upper gastrointestinal surgical resection. Clin Nutr. 2011 Oct;30(5):560-6. Epub 2011 May 20. PubMed PMID: 21601319.	Elective surgery patients
Nguyen NQ, Besanko LK, Burgstad C, Bellon M, Holloway RH, Chapman M, Horowitz M, Fraser RJ. Delayed enteral feeding impairs intestinal carbohydrate absorption in critically ill patients. Crit Care Med. 2012 Jan;40(1):50-4.	Same data as reported by Nguyen 2008
Kesey J, Dissanaike S. A protocol of early aggressive acceleration of tube feeding increases ileus without perceptible benefit in severely burned patients. J Burn Care Res. 2013 Sep-Oct;34(5):515-20.	Not RCT
Wang X, Dong Y, Han X, Qi X-Q, Huang C-G, Hou L. (2013) Nutritional Support for Patients Sustaining Traumatic Brain Injury: A Systematic Review and Meta-Analysis of Prospective Studies. PLoS ONE. 8(3): e58838.	Meta-analysis
Bakiner O, Bozkirli E, Giray S, Arlier Z, Kozanoglu I, Sezgin N, Sariturk C, Ertorer E. Impact of early versus late enteral nutrition on cell mediated immunity and its relationship with glucagon like peptide-1 in intensive care unit patients: a prospective study. Crit Care. 2013 Jun 20;17(3):R123.	Not critically ill
Bakker OJ, van Brunschot S, van Santvoort HC, Besselink MG, Bollen TL, BoermeesterMA, Dejong CH, van Goor H, Bosscha K, Ahmed Ali U, et al.; Dutch Pancreatitis Study Group. Early versus on-demand nasoenteric tube feeding in acute pancreatitis. N Engl J Med 2014;371:1983–1993.	Not critically ill
Li CH, Chen DP, Yang J. Enteral Nutritional Support in Patients with Head Injuries After Craniocerebral Surgery. Turk Neurosurg. 2015;25(6):873-6.	No clinical outcomes

ſ	Stimac D, Poropat G, Hauser G, Licul V, Franjic N, Valkovic Zujic P, Milic S. Early nasojejunal tube feeding versus nil-by-mouth in acute	Not critically ill
	pancreatitis: A randomized clinical trial. Pancreatology. 2016 Jul-Aug;16(4):523-8.	